A Dynamic Hurdle Model for Zero-Inflated Count Data∗
نویسندگان
چکیده
Excess zeros are encountered in many empirical count data applications. We provide a new explanation of extra zeros, related to the underlying stochastic process that generates events. The process has two rates, a lower rate until the first event, and a higher one thereafter. We derive the corresponding distribution of the number of events during a fixed period and extend it to account for observed and unobserved heterogeneity. An application to the socio-economic determinants of the individual number of doctor visits in Germany illustrates the usefulness of the new approach. JEL Classification: C25, I10
منابع مشابه
Hurdle, Inflated Poisson and Inflated Negative Binomial Regression Models for Analysis of Count Data with Extra Zeros
In this paper, we propose Hurdle regression models for analysing count responses with extra zeros. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset. In this example, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...
متن کاملApplication of hurdle model with random effects for evaluating the balance improvement in stroke patients
Background: Stroke is a prevalent cause of disability in adults. The fall is the most common balance and motor impairments, which affects the quality of life in stroke patients. This study aims to employ random effects hurdle model for evaluating the balance improvement in stroke patients under the occupational therapy. Methods: In this longitudinal study with repeated measurement during on...
متن کاملAssessment and Selection of Competing Models for Zero-Inflated Microbiome Data
Typical data in a microbiome study consist of the operational taxonomic unit (OTU) counts that have the characteristic of excess zeros, which are often ignored by investigators. In this paper, we compare the performance of different competing methods to model data with zero inflated features through extensive simulations and application to a microbiome study. These methods include standard para...
متن کاملRandom effect models for repeated measures of zero-inflated count data
For count responses, the situation of excess zeros (relative to what standard models allow) often occurs in biomedical and sociological applications. Modeling repeated measures of zero-inflated count data presents special challenges. This is because in addition to the problem of extra zeros, the correlation between measurements upon the same subject at different occasions needs to be taken into...
متن کاملAnalysis of zero-inflated clustered count data: A marginalized model approach
Min and Agresti (2005) proposed random effect hurdle models for zero-inflated clustered count data with two-part random effects for a binary component and a truncated count component. In this paper, we propose new marginalized models for zero-inflated clustered count data using random effects. The marginalized models are similar to Dobbie and Welsh’s (2001) model in which generalized estimating...
متن کاملSpace – time zero - inflated count models of Harbor seals ‡ Jay
Environmental data are spatial, temporal, and often come with many zeros. In this paper, we included space–time random effects in zero-inflated Poisson (ZIP) and ‘hurdle’ models to investigate haulout patterns of harbor seals on glacial ice. The data consisted of counts, for 18 dates on a lattice grid of samples, of harbor seals hauled out on glacial ice in Disenchantment Bay, near Yakutat, Ala...
متن کامل